Alternate interactions define the binding of peptides to the MHC molecule IA(b).
نویسندگان
چکیده
We have solved the crystal structure of the MHCII molecule, IA(b), containing an antigenic variant of the major IA(b)-binding peptide derived from the MHCII IEalpha chain. The four MHC pockets at p1, p4, p6, and p9 that usually bind peptide side chains are largely empty because of alanines in the peptide at these positions. The complex is nevertheless very stable, apparently because of unique alternate interactions between the IA(b) and peptide. In particular, there are multiple additional hydrogen bonds between the N-terminal end of the peptide and the IA(b) alpha chain and an extensive hydrogen bond network involving an asparagine at p7 position of the peptide and the IA(b) beta chain. By using knowledge of the shape and size of the traditional side chain binding pockets and the additional possible interactions, an IA(b) peptide-binding motif can be deduced that agrees well with the sequences of known IA(b)-binding peptides.
منابع مشابه
پیشرفت های جدید در شناخت اسپوندیلوآرتروپاتی ها
In last few years, numerous observations and studies on pathogenesis of spondyloarthropathies have been published and an animal model which confirms the associations of new information is now available. Bacteria which are responsible for reactive arthritis all can remain in the cells for long time. Molecules of class I MHC are able to present the intracellular peptides to immune system. B27 mol...
متن کاملCoupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes.
The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative...
متن کاملThe nonclassical MHC class I molecule Qa-1 forms unstable peptide complexes.
The MHC class Ib molecule Qa-1 is the primary ligand for mouse CD94/NKG2A inhibitory receptors expressed on NK cells, in addition to presenting Ags to a subpopulation of T cells. CD94/NKG2A receptors specifically recognize Qa-1 bound to the MHC class Ia leader sequence-derived peptide Qdm. Qdm is the dominant peptide loaded onto Qa-1 under physiological conditions and this peptide has an optima...
متن کاملProcessing of exogenous antigens for presentation by class I MHC molecules involves post-Golgi peptide exchange influenced by peptide-MHC complex stability and acidic pH.
Vacuolar alternate class I MHC (MHC-I) Ag processing allows presentation of exogenous Ag by MHC-I molecules with binding of antigenic peptides to post-Golgi MHC-I molecules. We investigated the role of previously bound peptides and their dissociation in generating peptide-receptive MHC-I molecules. TAP1-knockout macrophages were incubated overnight with an initial exogenous peptide, producing a...
متن کاملTumor defense by murine cytotoxic T cells specific for peptide bound to nonclassical MHC class I.
Cytotoxic T Cells (CTLs) can exhibit considerable antitumor activity. Thus far, the characterized tumor peptide antigens recognized by CTLs are all presented by classical MHC class Ia molecules [human lymphocyte antigen A (HLA-A), HLA-B, and HLA-C in humans and H-2K, H-2D, and H-2L in mice]. Here we show that CTLs recognized peptides presented by nonclassical MHC class Ib molecule Qa-1b express...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 13 شماره
صفحات -
تاریخ انتشار 2002